Applications of Brain Activity Data in Predicting Brain Disorders

Alireza Fathian

Neurons

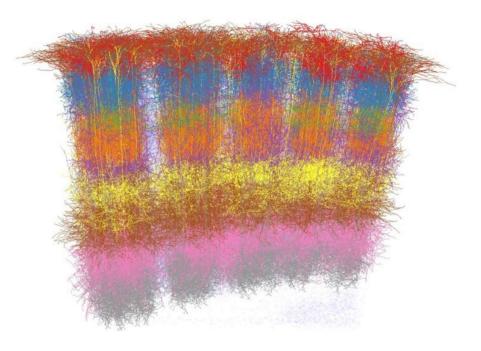


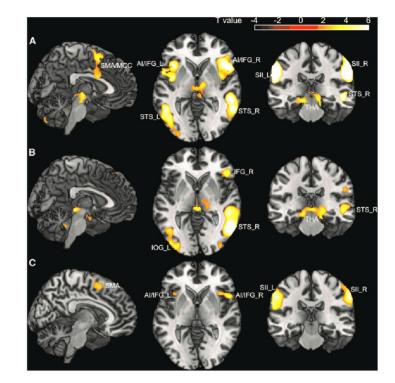
Image from Doctor Jana

Marcel Oberlaender et al.(2014)

NeuronsBrain DataThe multi-scale brainConstructing Brain NetworksNetwork AnalysisBrain ActivityMachine Learning1

Brain Data

- MRI Based Data
- EEG



fMRI results of whole-brain. Xiaochun Han et al (2017)

Neurons

Brain Activity

Brain Data

Machine Learning

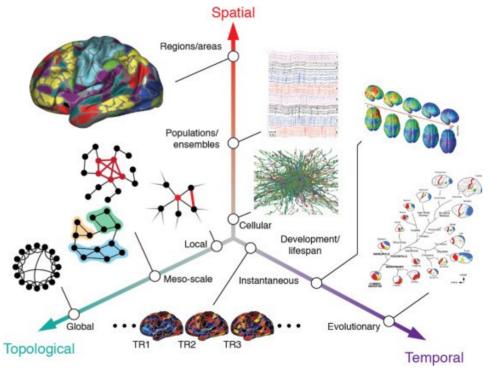
The multi-scale brain

Constructing Brain Networks

Network Analysis

The multi-scale brain

Brain networks are organized across multiple spatiotemporal scales and also can be analyzed at topological (network) scales ranging from individual nodes to the network as a whole.



Richard F.Betzel et al. (2016)

Neurons	Brain Data	The mult	i-scale brain	Constructing Brain Networks	Netv	vork Analysis
Brain Activity	Machine l	Learning				3

Constructing Brain Networks

• Parcellation

Defining distinct partitions in the brain

Destrieux atlas (Christophe Destrieux et al. 2010)

148 ROIs (Cortical Parcellation)

Constructing Brain Networks

- Connectivity Estimators
 - Functional Connectivity
 - Structural Connectivity

Network Analysis

• Clustering

It is the property that two vertices of the network that are both adjacent of the same third vertex have an increased probability of also being adjacent of one another.

• Small-world

Most nodes can be reached from every other node by a small number of hops or steps.

Brain Activity

Neurons

Constructing Brain Networks

Network Analysis

• Centerality Measures

To rank graph nodes based on their topological importance. Exampls:

The multi-scale brain

- Degree
- Betweenness:

Brain Data

Machine Learning

measure of the influence of a vertex over the flow of information between every pair of vertices.

- etc

Neurons

Brain Activity

Machine Learning For Disease Detection

Intro	Toy Problem	Gradient Descent	SVM	Neural Networks
Brain Activity	Machine Learning			8

Machine Learning

Machine learning is a subfield of computer science that is concerned with building algorithms which, to be useful, rely on a collection of examples of some phenomenon.

Machine learning can also be defined as the process of solving a practical problem by 1)gathering a dataset, and 2) algorithmically building a statistical model based on that dataset. That statistical model is assumed to be used somehow to solve the practical problem.

Intro	Toy Problem	Gradient Descent	SVM	Neural Networks
Brain Activity	Machine Learning			g

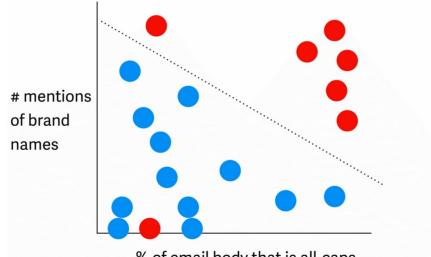
Classification

- Supervised learning: You need data labaled with the correct answers to train these algorithms before they work.
- Features: Attribute of the data
- Class, Labales: The groups that we are sorting things into them

Intro	Toy Problem	Gradient Descent	SVM	Neu	ral Networks
Brain Activity	Machine Learning				10

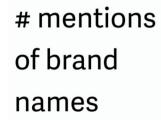
Toy Problem

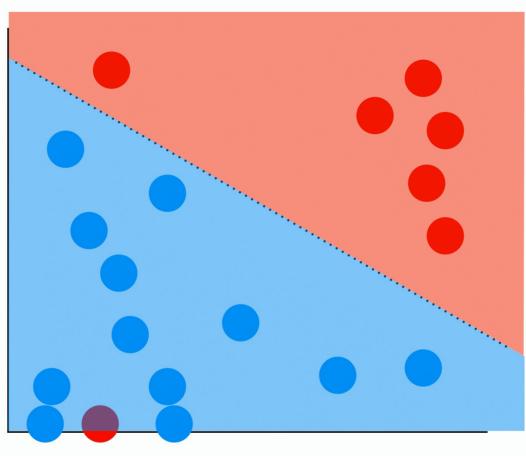
 Spam email detection: Binary Classification: Spam/ Not Spam



% of emai	body that is all-cap	s
-----------	----------------------	---

Intro	Toy Problem	Gradient Descent	SVM	Neural Networks	
Brain Activity	Machine Learning				11

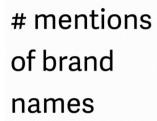


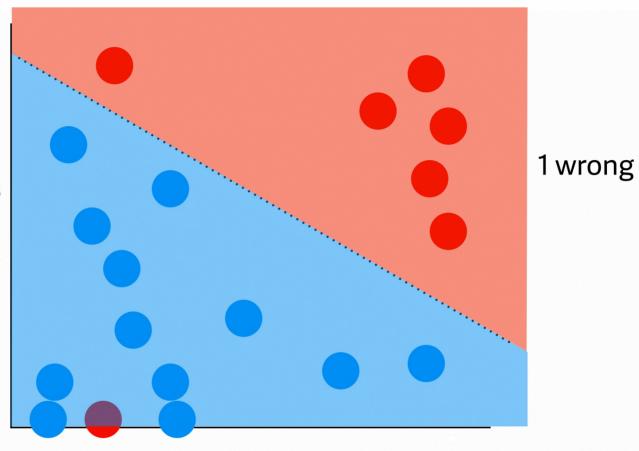


Intro			
Brain Activity			

Toy Problem Machine Learning

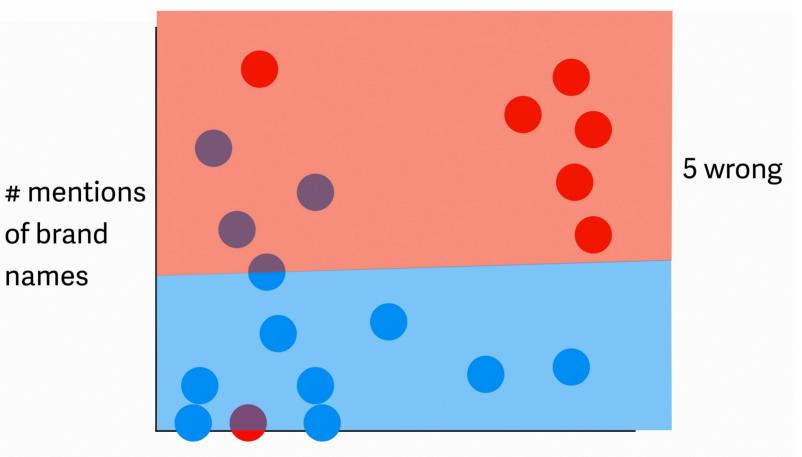
Gradient Descent





Intro		
Brain	Activity	

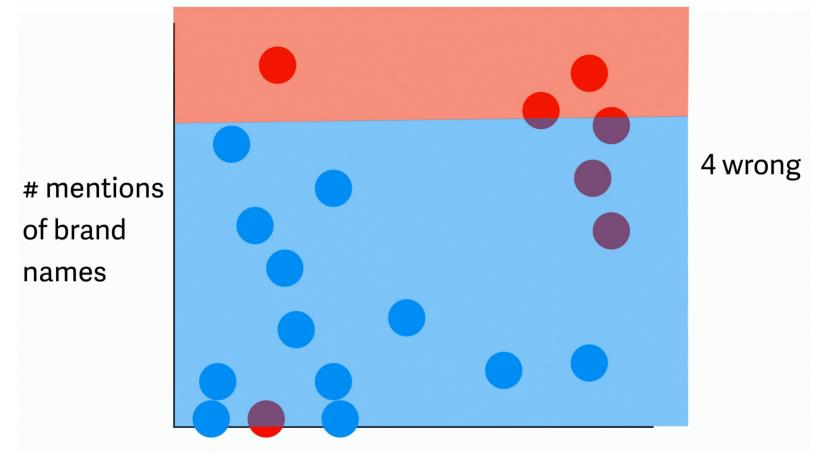
Toy Problem Machine Learning **Gradient Descent**



Intro			
Brain	Activity		

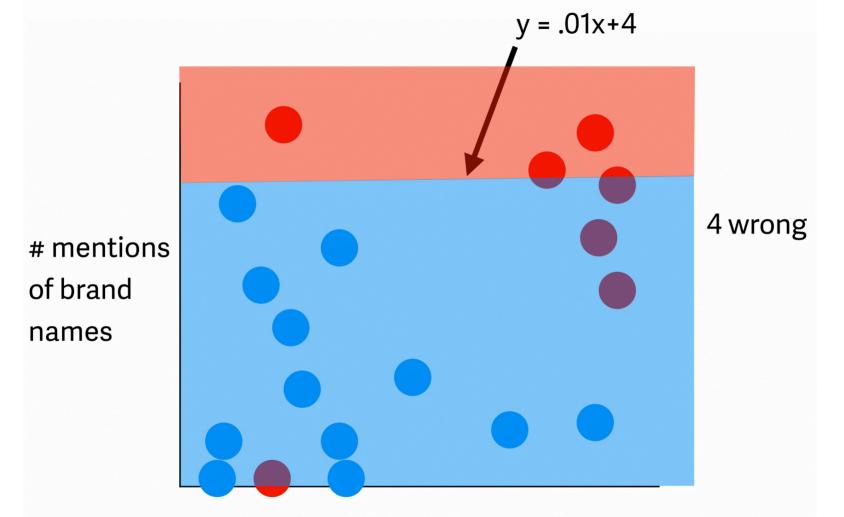
Toy Problem Machine Learning **Gradient Descent**

14



Intro		
Brain	Activity	

Toy Problem Machine Learning **Gradient Descent**

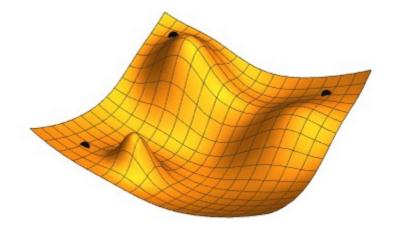


Intro	
Brain Activity	

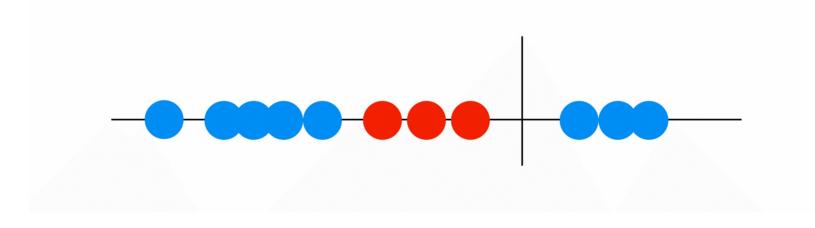
Toy Problem Machine Learning Gradient Descent

Minimizing the error Function

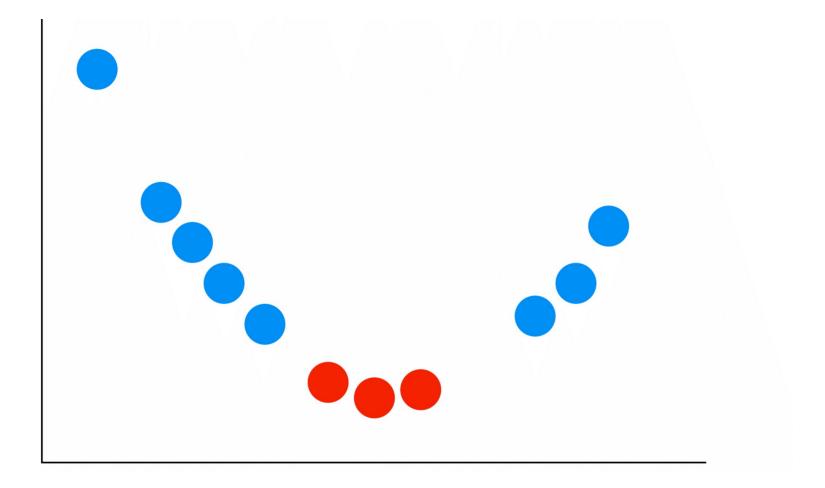
Finding optimum values for model parameters



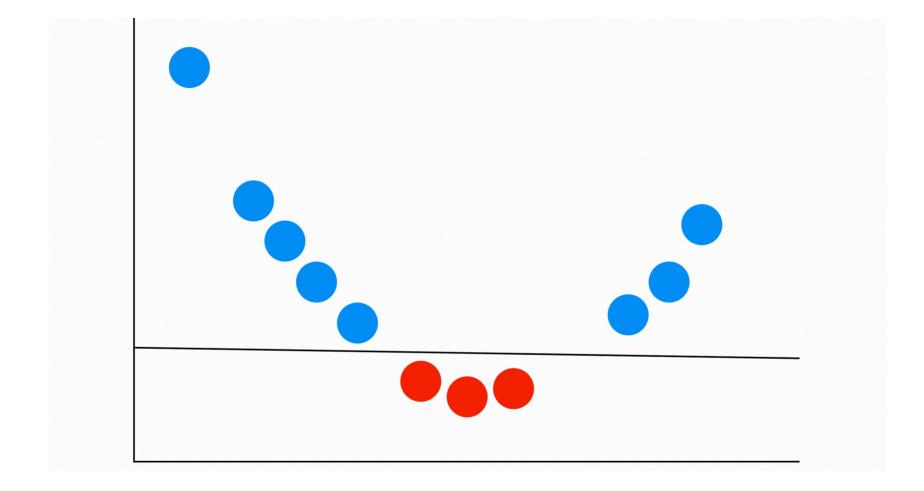
Intro	Toy Problem	Gradient Descent	SVM	Neural Networks
Brain Activity	Machine Learning			17



Intro	Toy Problem	Gradient Descent	SVM	Neu	ral Networks
Brain Activity	Machine Learning				18



Intro	Toy Problem	Gradient Descent	SVM	Neu	ral Networks
Brain Activity	Machine Learning				19



Intro	Toy Problem	Gradient Descent	SVM	Neural Networks
Brain Activity	Machine Learning			20

Support Vector Machine (SVM)

 x_2

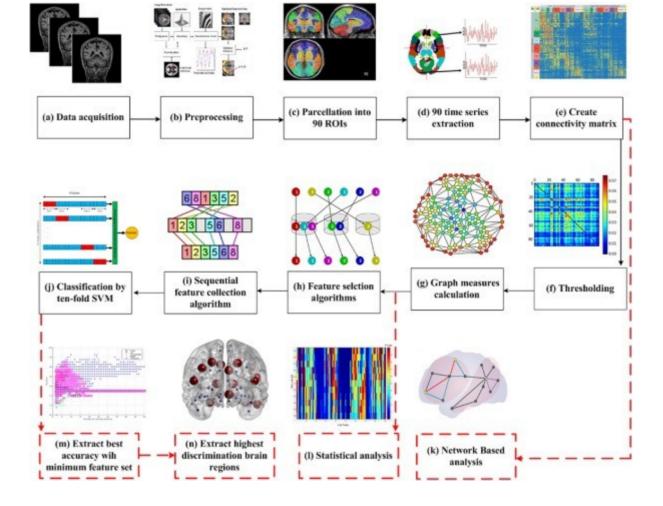
 x_1

- $\mathbf{w}\mathbf{x}_i b \ge 1$ if $y_i = +1$, and
- $\mathbf{w}\mathbf{x}_i b \leq -1$ if $y_i = -1$

 $\frac{2}{\|\mathbf{w}\|}$:The distance between hyperplanes

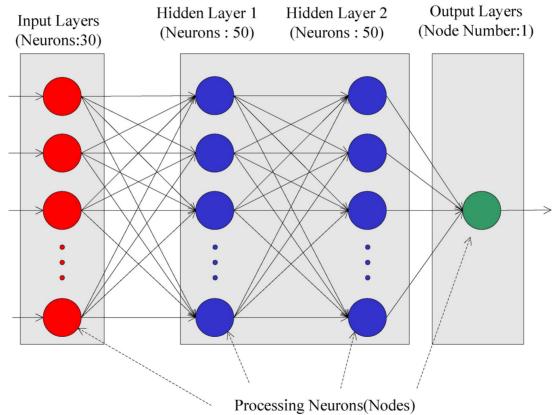
Minimize $\|\mathbf{w}\|$ subject to $y_i(\mathbf{wx}_i - b) \ge 1$ for i = 1, ..., N

Intro	Toy Problem	Gradient Descent	SVM	Neu	ral Networks
Brain Activity	Machine Learning				21

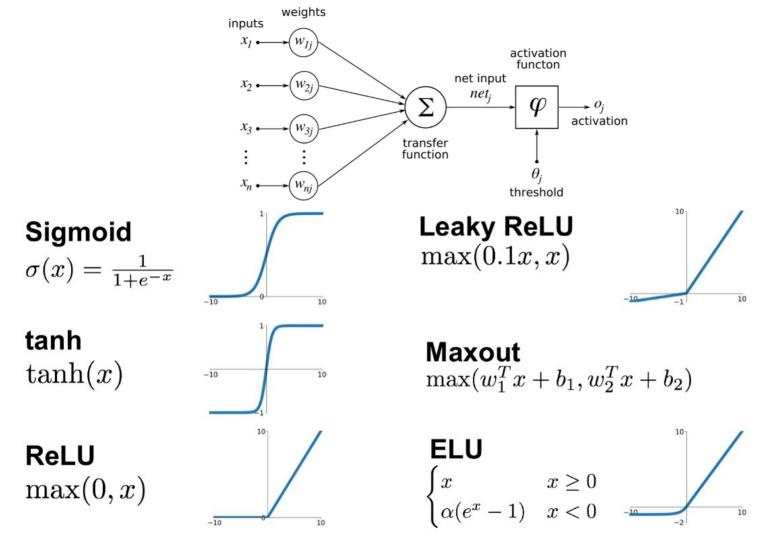


Intro	Toy Problem	Gradient Descent	SVM	Neural Networks
Brain Activity	Machine Learning			22

Neural Networks

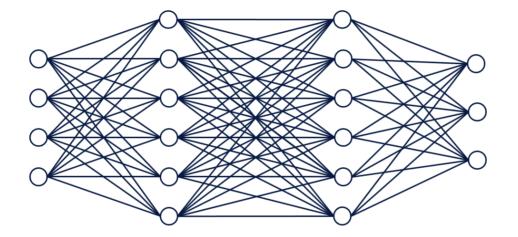


Intro	Toy Problem	Gradient Descent	SVM	Neu	ral Networks
Brain Activity	Machine Learning				23



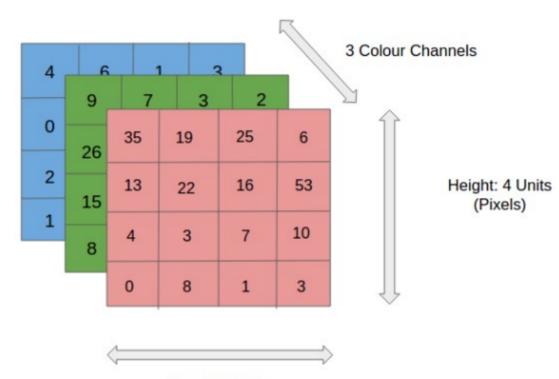
Intro	Toy Problem	Gradient Descent	SVM	Neu	ral Networks
Brain Activity	Machine Learning				24

Forward and Backward Propagation



 $Cross Entropy = -[ylog(p) + (1 - y) \log(1 - p)]$

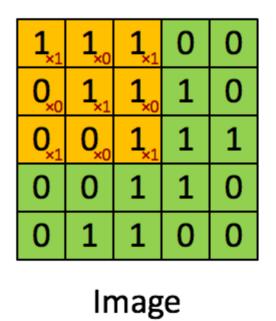
Intro	Toy Problem	Gradient Descent	SVM	Neu	ral Networks
Brain Activity	Machine Learning				25

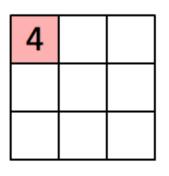


Width: 4 Units (Pixels)

Intro	Toy Problem	Gradient Descent	SVM	Neu	ral Networks
Brain Activity	Machine Learning				26

Kernel/Filter,
K =
1 0 1
0 1 0
1 0 1
1 0 1





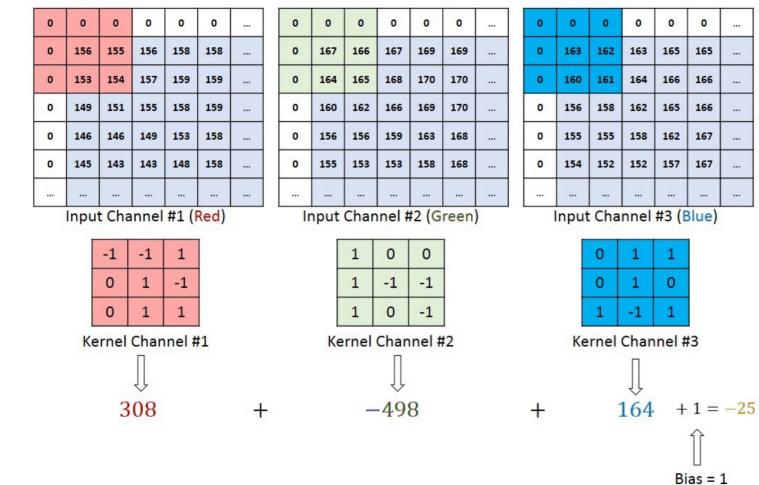
Convolved Feature

Intro	Toy Problem	Gradient Descent	SVM	Neural Networks
Brain Activity	Machine Learning			27

Convolutional neural network

(i) Convolutional layers(ii) Activation layers(iii) Pooling

Intro	Toy Problem	Gradient Descent	SVM	Neui	ral Networks
Brain Activity	Machine Learning				28



Output					
-25					

0

....

....

....

....

....

....

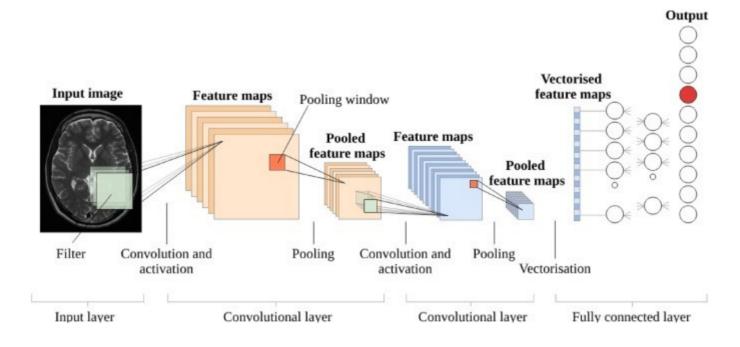
....

...

Intro	Toy Problem	Gradient Descent	SVM	Neural Networks	
Brain Activity	Machine Learning				29

max pooling Max pooling 12 37 average pooling

Intro	Toy Problem	Gradient Descent	SVM	Neural Networks	
Brain Activity	Machine Learning			30	



Alexander Selvikvåg Lundervold. (2018)

Intro	Toy Problem	Gradient Descent	SVM	Neural Networks	
Brain Activity	Machine Learning			31	

Intro	Toy Problem	Gradient Descent	SVM	Neural Networks
Brain Activity	Machine Learning			32